
The Rasterizer Stage 
Texturing, Lighting, Testing and Blending 
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From Primitives To Fragments 

Triangle Setup, Triangle Traversal and Back Face Culling 
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Post Clipping 

ÁIn the last stages of the geometry stage, vertices undergo the 

following: 

ÁThey are projected into clip space by multiplication with the projection 

matrix 

ÁThey are then clipped against the canonical view volume (unit cube), 

only vertices within the view volume are kept. 

ÁAfter clipping vertices are then converted into screen space 

coordinates. Due to the canonical view volume all verticesô depth (Z) 

values are between 0 and 1. 

ÁIt is these screen space vertices that are received by the 

triangle setup stage. 
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Triangle (primitive) Setup 

ÁTriangle Setup links up the screen space vertices to form 

triangles (can form lines as well). 

 

ÁThis linking is done according to the topology specified for 

the set of vertices (triangle list, triangle strip, triangle fan, etc) 

 

ÁOnce the linking is complete, backface culling is applied (if 

enabled). 

 

ÁTriangles that are not culled are sent to the triangle traversal 

stage. 
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Backface Culling 

ÁBackface culling is a technique used to discard polygons 

facing away from the camera. 

ÁThis lessens the load on the rasterizer by discarding 

polygons that are hidden by front facing ones. 

ÁIt is sometimes necessary to disable backface culling to 

correctly render certain objects. 

5 

Image courtesy of http://www.geometricalgebra.net/screenshots.html 



Backface Culling 

ÁTriangle Winding order is extremely important for backface 

culling. 

ÁBackface culling determines whether a polygon is front facing 

or not by the direction of the Z value of the primitiveôs normal 

vector (why the Z value?). 

ÁThis normal vector is calculated by taking the cross product 

of the two edge vectors (v1-v0) and (v2-v0). 
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Triangle Traversal 

ÁOnce the triangle has been constructed, the triangle traversal 

stage moves over (traverses) the triangle surface, and 

creates a fragment for each pixel covered by the triangle. 

ÁFragments contain vertex data that has been interpolated 

across the surface from the primitives vertices. 

ÁEach Fragment contains at least the following: 

ÁThe pixel location (X,Y) ï Range: ([0,screenWidth], [0,screenHeight]) 

ÁThe depth value (Z) linearly interpolationï Range: [0,1] 

ÁAdditional Vertex Data such as vertex color value, texture coordinates 

and normal vectors. 

 

ÁThese fragments are tested (covered later) and if valid are 

then sent to the pixel shader, which calculates the final 

fragment color! 
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The Pixel Shader 

ÁThe pixel shader is responsible for the calculation of the final 

color for a fragment. 

 

ÁPixel shaders may take a variety of input data structs. 

 

ÁPixel shaders only return a color value. 

 

ÁPixel Shaders are responsible for operations such as 

texturing and per pixel lighting. 
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Texturing 

The Texturing Pipeline and Texture Sampling Methods 
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Texture Mapping 

ÁTexture Mapping (Texturing) is a process where we modify a 

surface at every point by using an image or function.  

ÁThis allows us to use a color map (an image) to define the 

colors of a surface instead of simple vertex colors. 

ÁIn addition to using a texture to define color values, it can be 

used to store other surface information such as normal 

vectors. 

ÁTexturing is performed in the Pixel Shader Program. 
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Textures 

ÁA texture (or texture map) can be thought of as simple N 

dimensional data table. 

 

ÁThere are three common types of textures: 1D, 2D and 3D. 

 

Á2D textures are represented by bitmapped images and are 

the most commonly encountered type and will be our focus. 

 

ÁDepending on the bit depth of our texture map (8,16,24,32)  

we can store various data in our textures. 
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Textures 

ÁEach data element in a texture is called a texture element 

(texel) and even though each texel is usually represented by 

a pixel in our texture map, we use the term texel to 

differentiate it from pixels on the screen. 

 

ÁThe most common type of texture is a color map 

(diffuse/albedo map), this type of texture changes the surface 

color of an object. 
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Texture Coordinates 

ÁEach texel is referenced (indexed) by a texture coordinate 

pair: (u,v), defining the horizontal and vertical pixel positions 

in the image respectively.   

 

ÁThese uv coordinates range from 0 (start of the texture) to 1 

(end of the texture).  
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Texture Coordinates 

ÁJust like vertex colors, texture coordinates are assigned at 

each modelôs vertices and are linearly interpolated across a 

surface during fragment generation. 

ÁThe texturing pipeline ensures that each fragment has a valid 

texture coordinate pair. 
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Texturing Pipeline: The Projector Function 

ÁThe Projector Function converts a point from 3D object space to a 
(u,v) pair in parameter space by interpolating the vertex texture 
coordinates.  

 

ÁParameter space is texture space without the range limitations 

 

ÁThis means that each fragment generated from a triangle face 
during triangle traversal now has a (u,v) pair associated to it.  

 

ÁThese (u,v) pairs are usually fractions and outside of the [0,1] 
range for texture coordinates and so do not directly correspond to 
a valid texel location on the texture map. 
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Texturing Pipeline: The Corresponder Function 

ÁThe corresponder function converts the parameter space 

(u,v) coordinates to valid texture space coordinates. 

  

ÁParameter space coordinates often have u,v values that are 

invalid (>1 or <0 ).  

 

ÁThese values need to be converted to the valid texture space 

range [0,1]. 

 

ÁThis clamping is performed using an addressing mode. 
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Addressing Modes 

ÁWrap: The texture repeats across the surface. The difference between the 
start and end u,v values define how many times the texture will be repeated 
horizontally and vertically. 

 

ÁMirror: Same as Wrap, except the texture is now mirrored for every other 
repetition. 

 

ÁClamp/Clamp to Edge: All values outside the range [0,1] are clamped to this 
range. This results in all coordinates outside texture space being set to the 
value of the nearest edge texel coordinates. 

 

ÁBorder/Clamp to Border: All values outside the range [0,1] are clamped to a 
user specified texel value. 
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Texturing Pipeline: Obtain Value Stage 

ÁTexture space coordinates from the corresponder function 

may be fractions and so not point directly to a texel location. 

ÁThe obtain value stage calculates the correct texel value to 

return for a texture coordinate pair. 

ÁThis technique is called sampling/filtering, the simplest 

solution is to select the texel whose center is nearest to the 

input texture coordinates. This is called point 

sampling/nearest neighbor filtering. 

ÁThis Stage returns the texel value to the pixel shader 
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Texturing Pipeline 

ÁThe texturing pipeline stage take places in several different 

stages in the modern GPU pipeline. 

 

ÁThe Projector Function occurs during the Triangle Traversal 

Stage. 

 

ÁThe Obtain Value Function take place in the Pixel Shader 

Stage and take the form of an HLSL sampler structure. 
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Texturing Pipeline Overview 
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UV Mapping 

ÁUV Mapping is a technique whereby a 
3D model in unfolded or unwrapped 
onto a flat texture.  

 

ÁEach vertex in the model is given 
specific texture coordinates. 

 

ÁTexturing each face will only use a 
small subset of the texture map.  

 

ÁThis enables 3D modelers to use a 
single texture map for extremely 
complex models. 
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A Texturing Example 22 
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Texturing Artifacts and Aliasing 

Texel Density, Minification, Magnification, Mipmapping 
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Texel Density 

ÁTexel Density is the ratio of texels to fragments over a surface. 

 

ÁIf we draw a quad that is displayed by a 200x200px block and 

texture it using a 128x128px texture, then we will have a resulting 

texel density < 1 

 

ÁIf the texel density is < 1, the texture being used is too small and 

will effectively be magnified to cover the surface, this is known as 

magnification 

 

ÁIf the texel density is > 1, the texture being used is too large and 

will effectively be shrunk to cover the surface, this is known as 

minification. 
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Magnification 

ÁMagnification occurs when the texel density is < 1  

ÁThis means that each pixel covers less than one texel, as a 

result texel values get repeated in the final image and this 

causes pixelation. 
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Minification 

ÁMagnification occurs when the texel density is > 1  

ÁThis means that each pixel covers more than one texel. 

Using point sampling to select the texel value now causes 

severe artifacts known as pixel swimming. 
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Mipmapping 

ÁTo correct the artifacts seen due to mini/magnification, we 

need to ensure that the texel density is as close to 1 as 

possible. 

ÁIt is impossible to adjust the texel density at runtime with a 

fixed size texture. 

ÁOne solution is to create multiple sizes of the same texture 

and choose the texture size whose texel density is closest to 

1. Doing so would greatly reduce the visual artifacts seen. 

ÁThis technique is called mipmapping. 
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Mipmapping 

ÁMipmapping is a technique that generates a mipmap chain (a 

set of the original texture in various size). 

ÁThe original texture is found at level 0.  

ÁEach subsequent mipmap level (>0) in the chain consist of 

the previous mipmap downsampled to a quarter of the area. 

ÁSelection of the appropriate mipmap to use is automatically 

done by the API/GPU. 
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Texturing  Artifacts 

ÁMinification causes moire patterns, pixel swimming and 

aliased lines . In addition it is highly inefficient to render high 

resolution textures when they will end up being displayed 

using a very low pixel count. 

ÁMagnification causes blockiness/pixelation and aliasing of 

lines 

ÁMipmapping helps fix the above problems but textures pop in 

and out when swapping between miplevels. 
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Texture Sampling Methods 

Nearest Neighbor, Bilinear, Trilinear and Anisotropic filtering 

30 



Texture Filtering 

ÁIn a perfect world, texel density will always be 1 (1 texel for 

each pixel) and so selection of the correct texel value for a 

fragment will be simple. This is almost never the case so we 

need methods to select a texel value for each pixel.  

 

ÁTexture filtering deals with the selection of the texel value for 

a given fragment, during the obtain value stage. Remember 

that the texel coordinates provided to the obtain value stage 

are often fractions. 
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Nearest Neighbor Filtering 

ÁNearest neighbor filtering/ point sampling simply rounds the 
texture space (u,v) coordinates received to the nearest texel. 
As this is an estimate of the texel to be used, slight view 
changes may result in a neighboring texel being selected 
and so often surfaces will swap pixels rapidly as the view 
changes (this is term pixel swimming). 
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Bilinear Filtering 

ÁBilinear filtering improves upon point sampling by returning 
the linear interpolation of the closest texel and its the four 
surrounding texels as well. 

ÁThis prevents pixel swimming and smoothens out jagged 
lines but causes the scene to be a bit blurry. 
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Trilinear Filtering 

ÁMipmapping has one major visual artifact, the swap between mipmap 
levels is noticeable.  

ÁTo prevent this abrupt visual change the closest two mipmap levels are 
selected and a texel value returned for each mipmap level using bilinear 
filtering. 

ÁThe final texel value returned is a linear interpolation between the two 
mip levelsô bilinearly filtered texel values. The closer a mipmap levelôs 
texel density is to 1, the more weight it is given in the interpolation. 
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Anisotropic Filtering 

ÁIsotropic means the same in all directions and so far all our filtering 
has been isotropic, anisotropic filtering means that filtering is not 
the same in all directions.  

 

ÁBilinear/Trilinear filtering both filter a texture using a uniform block 
of texels, which is okay when viewing the surface head on but 
when the surface is at an oblique angle to the viewer, this is not 
problematic (why?) 

 

ÁWith perspective when viewing a surface at an angle the surface 
gets stretched into the distance and so the texture filtering needs 
to adapt to this, anisotropic filtering samples texel using a 
trapezoidal region corresponding to the view angle. 

 

ÁAnisotropic greatly improves visual quality at a distance! 
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Demonstration of Texture Filtering 36 
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Lighting 

Lights, Materials, Reflection Models and Shading Models  
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Light 

ÁLight is made up of electromagnetic waves that are picked up 

by the human eye (an electromagnetic sensor). 

ÁThere are various types of light sources around us, both 

natural and man-made. These light sources make it possible 

for use to see around us due to the reflection of the 

electromagnetic waves off of objects. 

ÁLight waves are directional and several visual phenomena  

result from this e.g. shadows, lens flares, light volumes, etc. 

ÁThese visual phenomena are very important in the computer 

graphics fields as they add definition and realism to a scene. 
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Light Colors 

ÁLight waves vary in wavelength and frequency. We see these 
variations as color. 

ÁHuman vision is tri-chromatic, which means that the eye has three 
color receptors.  This is the reason why we generally model color 
as a combination of three primary colors (Red , Green and Blue).  

ÁSince waves are additive so are light colors. This means that any 
color can be created by a combination of the three primary light 
colors. 
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Light Intensity and Attenuation 

ÁA light source emits light waves with a certain amplitude (or 

energy), the greater the amplitude of the waves emitted the 

brighter that light source appears.  

ÁThe amplitude of the light wave is termed its intensity.  

ÁAs light travels, it loses energy and its amplitude decreases, 

this is termed attenuation. Think about how brightness 

decreases the further you are away from a light source. 

ÁThe amount of attenuation exhibited by a light wave is 

calculated by a distance falloff function, the simplest one 

being: 

ὃὸὸὩὲόὥὸὭέὲὨ
ρ

Ὠ
 

Where d is the distance from the light source 
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Light in Computer Graphics 

ÁLight intensity in computer graphics is defined in the same 

manner as a color: Lintensity = [Red, Green, Blue] 

 

ÁEach value represents the intensity of a color wave and has 

a range of [0,1] 

 

ÁAttenuation is applied to a light by a scalar multiplication of 

the light with an attenuation value (A) 

 

ÁOr by piecewise vector multiplication with a light wave 

attenuation triplet A = [Ared, Agreen, Ablue]. This allows for óper 

colorô attenuation. 
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The importance of Lighting 42 



Light Sources 

Directional Lights, Point Light and Spotlights 
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Directional Lights 

ÁA directional light source is an infinitely 

distant light source (i.e. the sun).  

 

ÁDirectional lights are defined by: 

ÁA light intensity: Lintensity 

ÁA direction vector: Ldirection 

 

ÁDirectional lights do not exhibit 

attenuation. 
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Point Lights 

ÁA point light source is a light source at 

a specific location that emits light 

equally in all directions. 

 

ÁPoint lights are defined by: 

ÁA light intensity: Lintensity 

ÁA light position: Lposition 

 

ÁPoint lights exhibit attenuation. 
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Spotlights 

ÁA spotlight source is a point light which 

is enclosed in a cone directing the 

light in a circular beam.  

 

ÁSpotlights are defined by: 

ÁA light intensity: Lintensity 

ÁA light position: Lposition 

ÁA direction vector: Ldirection 

ÁA spotlight exponent: Sexp 

ÁThe spotlight exponent (Sexp) controls 

the tightness of the light beam 

ÁSpotlights exhibit attenuation. 
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Ambient Light 

ÁAmbient Light is the base light intensity applied to every 

object in the scene. 

 

ÁThis light source has no direction and is applied to all objects 

equally. 

 

ÁAmbient light is defined by an intensity value: Iambient 
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Light Surface Interactions 

Diffuse and Specular Reflections, Surfaces   

48 



Surface Interaction 

ÁThe angle between the incoming light ray and the surface is called 

the angle of incidence. 

 

ÁWhen a light wave collides with a surface, two reflections occur:  

 

ÁSpecular Reflection: Some of the light is immediately reflected back at the 

surface (the orange reflected rays in the image above). 

ÁDiffuse Reflection: The rest of the light is refracted into the surface and 

then reflected back out (the blue reflected rays in the image above). 
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Surface Interaction: Specular Reflections 

ÁSpecular reflection occurs when the light ray hits a surface 

and is immediately reflected back without entering the 

surface. 

ÁThe reflected light rays leave the surface in an arc, at an 

angle roughly equal to the angle of incidence.  

ÁThe surface smoothness affects the width of the arc of the 

reflected specular light. Smooth surfaces will have a tighter 

spread while rougher surfaces will reflect light in a wider arc. 
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Surface Interaction: Specular Highlights 

ÁSpecular highlights occur when the 
view angle is very similar to the angle 
of the reflected specular light. 

ÁThis means that the viewer will see 
the almost perfect reflection of the 
incident light ray at that point. 

ÁThe closer the two vectors get the 
greater the intensity. This causes the 
specular highlight seen in the image 
to the left. 

ÁThe surface smoothness determines 
the size of the specular highlights, 
smooth surfaces have small specular 
highlights since the specular arc is 
small. 
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Surface Interaction: Diffuse Reflections 

ÁDiffuse Reflection occurs when light rays enter a surface. 

The undergo transmission, absorption and scattering inside 

of the material before exiting the surface. 

ÁA diffuse reflection will scatter the exiting light rays in random 

directions, and there is no dependence on the angle of 

incidence.  

ÁPerfectly diffuse surfaces reflect exiting light equally in all 

directions, these surfaces are called Lambertian surfaces. 
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Diffuse Reflections: Lamberts Law 

ÁLambertôs Law states that the reflected light ray intensity at a 
perfectly diffuse surface is directly proportional to the cosine of the 
angle between the incoming light ray vector (from the surface to 
the light (L = -Ldirection) ) and the normal of the surface (—). 

 

╘▼◊►█╪╬▄╛░▪◄▄▪▼░◄◐ ἫἷἻⱣ ╛░▪◄▄▪▼░◄◐ ▪Ȣ■ 
 

ÁThis is commonly used to model the diffuse reflection at a surface, 
and is the root of the standard N.L diffuse lighting model. 
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Local Reflection Models 

Phong and Blinn-Phong Reflection Models 
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The Phong Reflection Model 

ÁIn 1973, Bui Tuong Phong, a researcher at the University of 

Utah proposed a model for the reflection of light on surfaces 

and a model for the shading of these surfaces.  

 

ÁThis model is the basis of most modern lighting techniques 

found in computer graphics. It was so popular that a modified 

version (blinn-phong) is part of the fixed function pipeline in 

both openGL and DirectX <9 APIs. 
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The Phong Reflection Model 

ÁThe Phong reflection model calculates the reflected light 

intensity at any point on a surface as the sum of the ambient, 

diffuse and specular reflection intensities: 

 

╘ ╘╪╘▀╘▼ 
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The Phong Reflection Model 

ÁTo compute the total surface intensity, we need the following 

data at each point on a surface: 

ÁN ï The Surface Normal Vector 

ÁL ï A vector from the surface to the light (negative light direction vector) 

ÁR ï The perfect reflection of L around N 

ÁV ï The vector from the surface to camera (eye) 

ÁSurface Reflection Properties 
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Basic Surface Materials 

ÁDifferent materials tend to reflect light differently. Smooth 
materials like metals reflect more specular light  than rough 
materials like wood. 

ÁTo be able to simulate different materials, we need 
information about how a surface reflects incoming light. 

 

ÁEach material defines the following reflectivity constants: 
ÁAmbient Reflectivity Constant ï Ka 

ÁDiffuse Reflectivity Constant ï Kd 

ÁSpecular Reflectivity Constant ï Ks  

ÁSurface Smoothness Value ï Ŭ (this value controls the size of the 
specular highlights) 

 

ÁThese reflectivity constants may be scalar values or triplets 
allowing for ñper colorò reflectivity constants.  
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The Phong RM: Ambient Term 

ÁThis term defines the ambient light intensity at a point on the 

surface. 

 
Ὅ ὑ Ὅ   
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The Phong RM: Diffuse Term 

ÁThis term defines the diffuse intensity reflected at the 

surface, we assume all surfaces are perfectly diffuse and use 

Lambertôs law. 

 

Ὅ ὑ ὒ  ὔȢὒ 
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The Phong RM: Specular Term 

ÁThis term defines the specular intensity reflected at the 

surface, the closer the view vector (V) is to the reflected 

vector (R) the stronger the intensity seen. 

 

Ὅ ὑ ὒ  ὙȢὠ  

ύὬὩὶὩ Ὑ ςὔ ὔȢὒ ὒ 
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The Phong RM: Conclusion 

ÁOnce we have calculate the 3 intensities we combine them to 

produce: 

 

Ὅ ὑ Ὅ ὒ ὑ ὔȢὒ ὑ ὙȢὠ  

 

ÁIn the case of multiple lights, since lighting is additive and 

ambient lighting is only applied once: 

 

Ὅ ὑ Ὅ ὒ ὑ ὔȢὒ ὑ ὙȢὠ   
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The Blinn-Phong Reflection Model 

ÁIn 1977, Jim Blinn proposed a modification to the Phong reflection 

model aimed at improving the performance of the calculation of the 

specular term.  

ÁHe proposed replacing the R.V term with N.H where H is a halfway 

vector between the view direction vector(V) and the light direction 

vector (L). 

Ὄ
ὒ ὠ

ὒ ὠ
 

 

ÁSince the halfway angle H is smaller than R this has the effect of 

creating smaller specular highlights using the Ŭ exponent.  

ÁTo counter this we use a new exponent a to bring the results of the 

two equations closer together. 
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The Blinn-Phong Reflection Model 

ÁThe specular term (Phong):   

 

Ὅ ὑ ὒ  ὙȢὠ  
 

Ánow becomes (Blinn-Phong):  

 

Ὅ ὑ ὒ  ὔȢὌ  
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Shading Models 

Flat, Gouraud and Phong Shading Models 
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Shading Models 

ÁShading is the technique of applying a reflection model 

(phong, blinn, cook-torrance, etc) across an objectôs 

surfaces. 

 

There are three main types of shading you will encounter: 

 

ÁFlat Shading (Per Primitive) 

ÁGouraud Shading (Per Vertex) 

ÁPhong Shading (Per Pixel) 
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Flat Shading 

ÁThe simplest form of shading 
is flat shading, in this 
technique, the reflection 
model is computed a single 
time per primitive, and the 
resulting intensity is used for 
the entire primitiveôs surface. 

 

ÁThis is often achieved by 
using the primitiveôs normal 
in the equation and results in 
obvious blockiness at the 
edges of primitives as the 
intensities differ for each 
primitive. 
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Gouraud Shading 
ÁGouraud Shading evaluates the 

reflection model at each vertex in 
the primitive (per vertex).  

 

ÁThe resulting intensities are 
interpolated across the primitive 
during fragment generation (just 
like vertex colors). 

 

ÁInstead of using a single normal 
per a primitive, we use the normal 
at each vertex.  

 

ÁIn a 3D mesh, vertices are often 
shared by multiple connected 
primitives, each one having its own 
normal. The vertex normal is the 
average of the normals of all 
primitives that share that vertex. 
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Phong Shading 
ÁPhong Shading evaluates the 

reflection model at each pixel in the 
primitive (per pixel).  

 

ÁVertex positions and Normals are 
interpolated across the surface of 
the primitive. 

 

ÁThe reflection model is evaluated at 
each pixel using the new normal 
and position. 

 

ÁSince the reflection model is 
evaluated at each pixel, this 
method has a much higher 
processing cost, but provides the 
best quality especially in regards to 
specular highlight quality. 
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Shading Models: Comparison 70 

Flat Shading /  

Per Primitive 

Gouraud Shading /  

Per Vertex 
Phong Shading /  

Per Pixel 



Fragment Testing 

Depth Testing, Stencil Testing and Alpha Testing 
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Fragment Testing 

ÁFragment Testing is a optimization technique to discard 

fragments that are not visible in the image saving an 

expensive write to the final render target. 

ÁFragment Testing occurs in or after the pixel shader stage 

(although a early depth test can performed prior to the pixel 

shader stage) 

ÁEach fragment is tested against some parameters (often 

stored within a texture) and if the fragment fails the test it is 

discarded. 
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Alpha Testing 

ÁAlpha testing is used for rendering 
that features transparency (not 
translucency). e.g. Chain link 
fence. 

ÁAlpha testing uses the color map 
(diffuse) texture for an object and 
occurs within the pixel shader. 

ÁWhen a color value is read from 
the diffuse texture, the alpha 
component is check and if its 
below a certain level, that 
fragment is discarded.  

ÁThis prevents the pixel shader 
from running any further 
expensive calculations on pixels 
that are invisible.  
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Stencil Testing 
ÁStencil testing occurs after the 

pixel shader stage. 

ÁStencil testing makes use of a 
stencil buffer texture to perform 
the fragment test.  

ÁA stencil buffer is a texture with 
the same dimensions as the 
frame buffer.  

ÁIt acts as a mask allowing only 
certain areas of the frame buffer 
to be drawn to. 
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ÁAfter a fragment is processed by the pixel shader, itôs position is 

checked in the stencil buffer, if the stencil buffer texel at that 

position allows writing then the fragment is written to the frame 

buffer otherwise it is discarded. 
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Depth Testing 
ÁWithout depth testing, overdraw occurs depending 

on the order of the polygons drawn and results in 

severe visual anomalies due to far faces being drawn 

on top of near faces. 

ÁTo combat that, a depth buffer texture is used. Like 

the stencil buffer, the depth buffer is the same size as 

the frame buffer and each value in the buffer 

contains the depth value of each corresponding pixel 

in the frame buffer. 

ÁWhen depth testing is enabled, prior to a fragment 

being drawn to the frame buffer, its depth value is 

compared to the current value in the depth buffer. If 

the fragment has a lower or equal value then it gets 

drawn to the frame (and its depth value gets 

recorded in the depth buffer) otherwise it gets 

discarded. 

ÁDepth Testing is also known as Z-testing. 
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Z-Fighting 

ÁZ-fighting occurs when we have two 

primitives that are coplanar and their 

depth values are very close to each 

other. Primitives appear to be merged 

together. 

ÁThe depth value stored in the depth 

buffer has limited precision and so 

depth test errors occur when a 

primitives interpolated high precision z-

values are checked against the low 

precision depth buffer value.  

ÁThis only occurs with perspective 

projections due to transformation of the 

view frustum into a unit cube. 
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Z-Fighting 

ÁDuring the projection of geometry into the view volume, the z value for each vertex 
gets divided by the w value, this occurs since the w value is not 1 after applying the 
perspective transform.  

ÁThis has the side effect that the precision of the clip-space depth values is not equally 
distributed across the view volume. The Range [0,1] is mapped to [0, 2b -1] for a 
perspective projection where b is the depth buffer bit depth. 

ÁMost of the precision occurs closer to the near plane and so distant objects (large z 
values) are defined in a much smaller range with lower precision.  

ÁIn the graph above the view frustum far plane is set at a depth of 100. Z values in the 
range [20,100] are defined in an interval of ~1.2 clip space units when the near plane 
is set to 50 and in an interval of only ~0.1 units with the near plane set to 1.  

ÁThere are various solutions to resolve z-fighting: the two most common ones are to 
add a z-offset to geometry or to simply increase the depth bufferôs bit depth providing 
a higher degree of precision. Z-buffers historical only had 16bit precision but 24bit 
and even 32bit z-buffers are common today. 
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Blending 

The Blending Equation and Alpha Blending 
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