
The Rasterizer Stage
Texturing, Lighting, Testing and Blending

1

From Primitives To Fragments

Triangle Setup, Triangle Traversal and Back Face Culling

2

Post Clipping

ÁIn the last stages of the geometry stage, vertices undergo the

following:

ÁThey are projected into clip space by multiplication with the projection

matrix

ÁThey are then clipped against the canonical view volume (unit cube),

only vertices within the view volume are kept.

ÁAfter clipping vertices are then converted into screen space

coordinates. Due to the canonical view volume all verticesô depth (Z)

values are between 0 and 1.

ÁIt is these screen space vertices that are received by the

triangle setup stage.

3

Triangle (primitive) Setup

ÁTriangle Setup links up the screen space vertices to form

triangles (can form lines as well).

ÁThis linking is done according to the topology specified for

the set of vertices (triangle list, triangle strip, triangle fan, etc)

ÁOnce the linking is complete, backface culling is applied (if

enabled).

ÁTriangles that are not culled are sent to the triangle traversal

stage.

4

Backface Culling

ÁBackface culling is a technique used to discard polygons

facing away from the camera.

ÁThis lessens the load on the rasterizer by discarding

polygons that are hidden by front facing ones.

ÁIt is sometimes necessary to disable backface culling to

correctly render certain objects.

5

Image courtesy of http://www.geometricalgebra.net/screenshots.html

Backface Culling

ÁTriangle Winding order is extremely important for backface

culling.

ÁBackface culling determines whether a polygon is front facing

or not by the direction of the Z value of the primitiveôs normal

vector (why the Z value?).

ÁThis normal vector is calculated by taking the cross product

of the two edge vectors (v1-v0) and (v2-v0).

6

V0

V1 V2

V0

V2
V1

N N

Anti-clockwise Clockwise

Triangle Traversal

ÁOnce the triangle has been constructed, the triangle traversal

stage moves over (traverses) the triangle surface, and

creates a fragment for each pixel covered by the triangle.

ÁFragments contain vertex data that has been interpolated

across the surface from the primitives vertices.

ÁEach Fragment contains at least the following:

ÁThe pixel location (X,Y) ï Range: ([0,screenWidth], [0,screenHeight])

ÁThe depth value (Z) linearly interpolationï Range: [0,1]

ÁAdditional Vertex Data such as vertex color value, texture coordinates

and normal vectors.

ÁThese fragments are tested (covered later) and if valid are

then sent to the pixel shader, which calculates the final

fragment color!

7

The Pixel Shader

ÁThe pixel shader is responsible for the calculation of the final

color for a fragment.

ÁPixel shaders may take a variety of input data structs.

ÁPixel shaders only return a color value.

ÁPixel Shaders are responsible for operations such as

texturing and per pixel lighting.

8

Texturing

The Texturing Pipeline and Texture Sampling Methods

9

Texture Mapping

ÁTexture Mapping (Texturing) is a process where we modify a

surface at every point by using an image or function.

ÁThis allows us to use a color map (an image) to define the

colors of a surface instead of simple vertex colors.

ÁIn addition to using a texture to define color values, it can be

used to store other surface information such as normal

vectors.

ÁTexturing is performed in the Pixel Shader Program.

10

+ =

Textures

ÁA texture (or texture map) can be thought of as simple N

dimensional data table.

ÁThere are three common types of textures: 1D, 2D and 3D.

Á2D textures are represented by bitmapped images and are

the most commonly encountered type and will be our focus.

ÁDepending on the bit depth of our texture map (8,16,24,32)

we can store various data in our textures.

11

Textures

ÁEach data element in a texture is called a texture element

(texel) and even though each texel is usually represented by

a pixel in our texture map, we use the term texel to

differentiate it from pixels on the screen.

ÁThe most common type of texture is a color map

(diffuse/albedo map), this type of texture changes the surface

color of an object.

12

Texture Coordinates

ÁEach texel is referenced (indexed) by a texture coordinate

pair: (u,v), defining the horizontal and vertical pixel positions

in the image respectively.

ÁThese uv coordinates range from 0 (start of the texture) to 1

(end of the texture).

13

Texture Coordinates

ÁJust like vertex colors, texture coordinates are assigned at

each modelôs vertices and are linearly interpolated across a

surface during fragment generation.

ÁThe texturing pipeline ensures that each fragment has a valid

texture coordinate pair.

14

Texturing Pipeline: The Projector Function

ÁThe Projector Function converts a point from 3D object space to a
(u,v) pair in parameter space by interpolating the vertex texture
coordinates.

ÁParameter space is texture space without the range limitations

ÁThis means that each fragment generated from a triangle face
during triangle traversal now has a (u,v) pair associated to it.

ÁThese (u,v) pairs are usually fractions and outside of the [0,1]
range for texture coordinates and so do not directly correspond to
a valid texel location on the texture map.

15

Projector

Function

Corresponder

Function
Obtain Value

Object

Space

Location

Parameter

Space

Coords

Texture

Space

Coords

Texel Value

Texturing Pipeline: The Corresponder Function

ÁThe corresponder function converts the parameter space

(u,v) coordinates to valid texture space coordinates.

ÁParameter space coordinates often have u,v values that are

invalid (>1 or <0).

ÁThese values need to be converted to the valid texture space

range [0,1].

ÁThis clamping is performed using an addressing mode.

16

Projector

Function

Corresponder

Function
Obtain Value

Object

Space

Location

Parameter

Space

Coords

Texture

Space

Coords

Texel Value

Addressing Modes

ÁWrap: The texture repeats across the surface. The difference between the
start and end u,v values define how many times the texture will be repeated
horizontally and vertically.

ÁMirror: Same as Wrap, except the texture is now mirrored for every other
repetition.

ÁClamp/Clamp to Edge: All values outside the range [0,1] are clamped to this
range. This results in all coordinates outside texture space being set to the
value of the nearest edge texel coordinates.

ÁBorder/Clamp to Border: All values outside the range [0,1] are clamped to a
user specified texel value.

17

Texturing Pipeline: Obtain Value Stage

ÁTexture space coordinates from the corresponder function

may be fractions and so not point directly to a texel location.

ÁThe obtain value stage calculates the correct texel value to

return for a texture coordinate pair.

ÁThis technique is called sampling/filtering, the simplest

solution is to select the texel whose center is nearest to the

input texture coordinates. This is called point

sampling/nearest neighbor filtering.

ÁThis Stage returns the texel value to the pixel shader

18

Projector

Function

Corresponder

Function
Obtain Value

Object

Space

Location

Parameter

Space

Coords

Texture

Space

Coords

Valid

Texel

Value

Texturing Pipeline

ÁThe texturing pipeline stage take places in several different

stages in the modern GPU pipeline.

ÁThe Projector Function occurs during the Triangle Traversal

Stage.

ÁThe Obtain Value Function take place in the Pixel Shader

Stage and take the form of an HLSL sampler structure.

19

Texturing Pipeline Overview

20

UV Mapping

ÁUV Mapping is a technique whereby a
3D model in unfolded or unwrapped
onto a flat texture.

ÁEach vertex in the model is given
specific texture coordinates.

ÁTexturing each face will only use a
small subset of the texture map.

ÁThis enables 3D modelers to use a
single texture map for extremely
complex models.

21

3D Model

Color Map

A Texturing Example 22

Required Result Texture

Texturing Artifacts and Aliasing

Texel Density, Minification, Magnification, Mipmapping

23

Texel Density

ÁTexel Density is the ratio of texels to fragments over a surface.

ÁIf we draw a quad that is displayed by a 200x200px block and

texture it using a 128x128px texture, then we will have a resulting

texel density < 1

ÁIf the texel density is < 1, the texture being used is too small and

will effectively be magnified to cover the surface, this is known as

magnification

ÁIf the texel density is > 1, the texture being used is too large and

will effectively be shrunk to cover the surface, this is known as

minification.

24

Magnification

ÁMagnification occurs when the texel density is < 1

ÁThis means that each pixel covers less than one texel, as a

result texel values get repeated in the final image and this

causes pixelation.

25

64x64

512x512

Minification

ÁMagnification occurs when the texel density is > 1

ÁThis means that each pixel covers more than one texel.

Using point sampling to select the texel value now causes

severe artifacts known as pixel swimming.

26

64x64

512x512

Mipmapping

ÁTo correct the artifacts seen due to mini/magnification, we

need to ensure that the texel density is as close to 1 as

possible.

ÁIt is impossible to adjust the texel density at runtime with a

fixed size texture.

ÁOne solution is to create multiple sizes of the same texture

and choose the texture size whose texel density is closest to

1. Doing so would greatly reduce the visual artifacts seen.

ÁThis technique is called mipmapping.

27

Mipmapping

ÁMipmapping is a technique that generates a mipmap chain (a

set of the original texture in various size).

ÁThe original texture is found at level 0.

ÁEach subsequent mipmap level (>0) in the chain consist of

the previous mipmap downsampled to a quarter of the area.

ÁSelection of the appropriate mipmap to use is automatically

done by the API/GPU.

28

Texturing Artifacts

ÁMinification causes moire patterns, pixel swimming and

aliased lines . In addition it is highly inefficient to render high

resolution textures when they will end up being displayed

using a very low pixel count.

ÁMagnification causes blockiness/pixelation and aliasing of

lines

ÁMipmapping helps fix the above problems but textures pop in

and out when swapping between miplevels.

29

Run Example Program!

Texture Sampling Methods

Nearest Neighbor, Bilinear, Trilinear and Anisotropic filtering

30

Texture Filtering

ÁIn a perfect world, texel density will always be 1 (1 texel for

each pixel) and so selection of the correct texel value for a

fragment will be simple. This is almost never the case so we

need methods to select a texel value for each pixel.

ÁTexture filtering deals with the selection of the texel value for

a given fragment, during the obtain value stage. Remember

that the texel coordinates provided to the obtain value stage

are often fractions.

31

Nearest Neighbor Filtering

ÁNearest neighbor filtering/ point sampling simply rounds the
texture space (u,v) coordinates received to the nearest texel.
As this is an estimate of the texel to be used, slight view
changes may result in a neighboring texel being selected
and so often surfaces will swap pixels rapidly as the view
changes (this is term pixel swimming).

32

0.21 0.235 0.26 0.285

0.67

0.625

0.76

(0.241,0.683)

Bilinear Filtering

ÁBilinear filtering improves upon point sampling by returning
the linear interpolation of the closest texel and its the four
surrounding texels as well.

ÁThis prevents pixel swimming and smoothens out jagged
lines but causes the scene to be a bit blurry.

33

Å Value interpolated across the top two texels

Å Value interpolated across bottom two texels

Å Final value is the interpolation between the

the above values

Trilinear Filtering

ÁMipmapping has one major visual artifact, the swap between mipmap
levels is noticeable.

ÁTo prevent this abrupt visual change the closest two mipmap levels are
selected and a texel value returned for each mipmap level using bilinear
filtering.

ÁThe final texel value returned is a linear interpolation between the two
mip levelsô bilinearly filtered texel values. The closer a mipmap levelôs
texel density is to 1, the more weight it is given in the interpolation.

34

Mip Level 2 Mip Level 3

Trilinearly interpolated

final value

Anisotropic Filtering

ÁIsotropic means the same in all directions and so far all our filtering
has been isotropic, anisotropic filtering means that filtering is not
the same in all directions.

ÁBilinear/Trilinear filtering both filter a texture using a uniform block
of texels, which is okay when viewing the surface head on but
when the surface is at an oblique angle to the viewer, this is not
problematic (why?)

ÁWith perspective when viewing a surface at an angle the surface
gets stretched into the distance and so the texture filtering needs
to adapt to this, anisotropic filtering samples texel using a
trapezoidal region corresponding to the view angle.

ÁAnisotropic greatly improves visual quality at a distance!

35

Demonstration of Texture Filtering 36

Run Example Program!

Lighting

Lights, Materials, Reflection Models and Shading Models

37

Light

ÁLight is made up of electromagnetic waves that are picked up

by the human eye (an electromagnetic sensor).

ÁThere are various types of light sources around us, both

natural and man-made. These light sources make it possible

for use to see around us due to the reflection of the

electromagnetic waves off of objects.

ÁLight waves are directional and several visual phenomena

result from this e.g. shadows, lens flares, light volumes, etc.

ÁThese visual phenomena are very important in the computer

graphics fields as they add definition and realism to a scene.

38

Light Colors

ÁLight waves vary in wavelength and frequency. We see these
variations as color.

ÁHuman vision is tri-chromatic, which means that the eye has three
color receptors. This is the reason why we generally model color
as a combination of three primary colors (Red , Green and Blue).

ÁSince waves are additive so are light colors. This means that any
color can be created by a combination of the three primary light
colors.

39

Light Intensity and Attenuation

ÁA light source emits light waves with a certain amplitude (or

energy), the greater the amplitude of the waves emitted the

brighter that light source appears.

ÁThe amplitude of the light wave is termed its intensity.

ÁAs light travels, it loses energy and its amplitude decreases,

this is termed attenuation. Think about how brightness

decreases the further you are away from a light source.

ÁThe amount of attenuation exhibited by a light wave is

calculated by a distance falloff function, the simplest one

being:

ὃὸὸὩὲόὥὸὭέὲὨ
ρ

Ὠ

Where d is the distance from the light source

40

Light in Computer Graphics

ÁLight intensity in computer graphics is defined in the same

manner as a color: Lintensity = [Red, Green, Blue]

ÁEach value represents the intensity of a color wave and has

a range of [0,1]

ÁAttenuation is applied to a light by a scalar multiplication of

the light with an attenuation value (A)

ÁOr by piecewise vector multiplication with a light wave

attenuation triplet A = [Ared, Agreen, Ablue]. This allows for óper

colorô attenuation.

41

The importance of Lighting 42

Light Sources

Directional Lights, Point Light and Spotlights

43

Directional Lights

ÁA directional light source is an infinitely

distant light source (i.e. the sun).

ÁDirectional lights are defined by:

ÁA light intensity: Lintensity

ÁA direction vector: Ldirection

ÁDirectional lights do not exhibit

attenuation.

44

Images from the Blender Documentation - http://www.blender.org/documentation

Point Lights

ÁA point light source is a light source at

a specific location that emits light

equally in all directions.

ÁPoint lights are defined by:

ÁA light intensity: Lintensity

ÁA light position: Lposition

ÁPoint lights exhibit attenuation.

45

Images from the Blender Documentation - http://www.blender.org/documentation

Spotlights

ÁA spotlight source is a point light which

is enclosed in a cone directing the

light in a circular beam.

ÁSpotlights are defined by:

ÁA light intensity: Lintensity

ÁA light position: Lposition

ÁA direction vector: Ldirection

ÁA spotlight exponent: Sexp

ÁThe spotlight exponent (Sexp) controls

the tightness of the light beam

ÁSpotlights exhibit attenuation.

46

Images from the Blender Documentation - http://www.blender.org/documentation

Ambient Light

ÁAmbient Light is the base light intensity applied to every

object in the scene.

ÁThis light source has no direction and is applied to all objects

equally.

ÁAmbient light is defined by an intensity value: Iambient

47

Light Surface Interactions

Diffuse and Specular Reflections, Surfaces

48

Surface Interaction

ÁThe angle between the incoming light ray and the surface is called

the angle of incidence.

ÁWhen a light wave collides with a surface, two reflections occur:

ÁSpecular Reflection: Some of the light is immediately reflected back at the

surface (the orange reflected rays in the image above).

ÁDiffuse Reflection: The rest of the light is refracted into the surface and

then reflected back out (the blue reflected rays in the image above).

49

Surface Interaction: Specular Reflections

ÁSpecular reflection occurs when the light ray hits a surface

and is immediately reflected back without entering the

surface.

ÁThe reflected light rays leave the surface in an arc, at an

angle roughly equal to the angle of incidence.

ÁThe surface smoothness affects the width of the arc of the

reflected specular light. Smooth surfaces will have a tighter

spread while rougher surfaces will reflect light in a wider arc.

50

Surface Interaction: Specular Highlights

ÁSpecular highlights occur when the
view angle is very similar to the angle
of the reflected specular light.

ÁThis means that the viewer will see
the almost perfect reflection of the
incident light ray at that point.

ÁThe closer the two vectors get the
greater the intensity. This causes the
specular highlight seen in the image
to the left.

ÁThe surface smoothness determines
the size of the specular highlights,
smooth surfaces have small specular
highlights since the specular arc is
small.

51

Surface Interaction: Diffuse Reflections

ÁDiffuse Reflection occurs when light rays enter a surface.

The undergo transmission, absorption and scattering inside

of the material before exiting the surface.

ÁA diffuse reflection will scatter the exiting light rays in random

directions, and there is no dependence on the angle of

incidence.

ÁPerfectly diffuse surfaces reflect exiting light equally in all

directions, these surfaces are called Lambertian surfaces.

52

Diffuse Reflections: Lamberts Law

ÁLambertôs Law states that the reflected light ray intensity at a
perfectly diffuse surface is directly proportional to the cosine of the
angle between the incoming light ray vector (from the surface to
the light (L = -Ldirection)) and the normal of the surface (—).

╘▼◊►█╪╬▄╛░▪◄▄▪▼░◄◐ ἫἷἻⱣ ╛░▪◄▄▪▼░◄◐ ▪Ȣ■

ÁThis is commonly used to model the diffuse reflection at a surface,
and is the root of the standard N.L diffuse lighting model.

53

A perfect diffuse (Lambertian) Surface

Local Reflection Models

Phong and Blinn-Phong Reflection Models

54

The Phong Reflection Model

ÁIn 1973, Bui Tuong Phong, a researcher at the University of

Utah proposed a model for the reflection of light on surfaces

and a model for the shading of these surfaces.

ÁThis model is the basis of most modern lighting techniques

found in computer graphics. It was so popular that a modified

version (blinn-phong) is part of the fixed function pipeline in

both openGL and DirectX <9 APIs.

55

The Phong Reflection Model

ÁThe Phong reflection model calculates the reflected light

intensity at any point on a surface as the sum of the ambient,

diffuse and specular reflection intensities:

╘ ╘╪╘▀╘▼

56

The Phong Reflection Model

ÁTo compute the total surface intensity, we need the following

data at each point on a surface:

ÁN ï The Surface Normal Vector

ÁL ï A vector from the surface to the light (negative light direction vector)

ÁR ï The perfect reflection of L around N

ÁV ï The vector from the surface to camera (eye)

ÁSurface Reflection Properties

57

Basic Surface Materials

ÁDifferent materials tend to reflect light differently. Smooth
materials like metals reflect more specular light than rough
materials like wood.

ÁTo be able to simulate different materials, we need
information about how a surface reflects incoming light.

ÁEach material defines the following reflectivity constants:
ÁAmbient Reflectivity Constant ï Ka

ÁDiffuse Reflectivity Constant ï Kd

ÁSpecular Reflectivity Constant ï Ks

ÁSurface Smoothness Value ï Ŭ (this value controls the size of the
specular highlights)

ÁThese reflectivity constants may be scalar values or triplets
allowing for ñper colorò reflectivity constants.

58

The Phong RM: Ambient Term

ÁThis term defines the ambient light intensity at a point on the

surface.

Ὅ ὑ Ὅ

59

The Phong RM: Diffuse Term

ÁThis term defines the diffuse intensity reflected at the

surface, we assume all surfaces are perfectly diffuse and use

Lambertôs law.

Ὅ ὑ ὒ ὔȢὒ

60

The Phong RM: Specular Term

ÁThis term defines the specular intensity reflected at the

surface, the closer the view vector (V) is to the reflected

vector (R) the stronger the intensity seen.

Ὅ ὑ ὒ ὙȢὠ

ύὬὩὶὩ Ὑ ςὔ ὔȢὒ ὒ

61

The Phong RM: Conclusion

ÁOnce we have calculate the 3 intensities we combine them to

produce:

Ὅ ὑ Ὅ ὒ ὑ ὔȢὒ ὑ ὙȢὠ

ÁIn the case of multiple lights, since lighting is additive and

ambient lighting is only applied once:

Ὅ ὑ Ὅ ὒ ὑ ὔȢὒ ὑ ὙȢὠ

62

The Blinn-Phong Reflection Model

ÁIn 1977, Jim Blinn proposed a modification to the Phong reflection

model aimed at improving the performance of the calculation of the

specular term.

ÁHe proposed replacing the R.V term with N.H where H is a halfway

vector between the view direction vector(V) and the light direction

vector (L).

Ὄ
ὒ ὠ

ὒ ὠ

ÁSince the halfway angle H is smaller than R this has the effect of

creating smaller specular highlights using the Ŭ exponent.

ÁTo counter this we use a new exponent a to bring the results of the

two equations closer together.

63

The Blinn-Phong Reflection Model

ÁThe specular term (Phong):

Ὅ ὑ ὒ ὙȢὠ

Ánow becomes (Blinn-Phong):

Ὅ ὑ ὒ ὔȢὌ

64

Shading Models

Flat, Gouraud and Phong Shading Models

65

Shading Models

ÁShading is the technique of applying a reflection model

(phong, blinn, cook-torrance, etc) across an objectôs

surfaces.

There are three main types of shading you will encounter:

ÁFlat Shading (Per Primitive)

ÁGouraud Shading (Per Vertex)

ÁPhong Shading (Per Pixel)

66

Flat Shading

ÁThe simplest form of shading
is flat shading, in this
technique, the reflection
model is computed a single
time per primitive, and the
resulting intensity is used for
the entire primitiveôs surface.

ÁThis is often achieved by
using the primitiveôs normal
in the equation and results in
obvious blockiness at the
edges of primitives as the
intensities differ for each
primitive.

67

Gouraud Shading
ÁGouraud Shading evaluates the

reflection model at each vertex in
the primitive (per vertex).

ÁThe resulting intensities are
interpolated across the primitive
during fragment generation (just
like vertex colors).

ÁInstead of using a single normal
per a primitive, we use the normal
at each vertex.

ÁIn a 3D mesh, vertices are often
shared by multiple connected
primitives, each one having its own
normal. The vertex normal is the
average of the normals of all
primitives that share that vertex.

68

Phong Shading
ÁPhong Shading evaluates the

reflection model at each pixel in the
primitive (per pixel).

ÁVertex positions and Normals are
interpolated across the surface of
the primitive.

ÁThe reflection model is evaluated at
each pixel using the new normal
and position.

ÁSince the reflection model is
evaluated at each pixel, this
method has a much higher
processing cost, but provides the
best quality especially in regards to
specular highlight quality.

69

Shading Models: Comparison 70

Flat Shading /

Per Primitive

Gouraud Shading /

Per Vertex
Phong Shading /

Per Pixel

Fragment Testing

Depth Testing, Stencil Testing and Alpha Testing

71

Fragment Testing

ÁFragment Testing is a optimization technique to discard

fragments that are not visible in the image saving an

expensive write to the final render target.

ÁFragment Testing occurs in or after the pixel shader stage

(although a early depth test can performed prior to the pixel

shader stage)

ÁEach fragment is tested against some parameters (often

stored within a texture) and if the fragment fails the test it is

discarded.

72

Alpha Testing

ÁAlpha testing is used for rendering
that features transparency (not
translucency). e.g. Chain link
fence.

ÁAlpha testing uses the color map
(diffuse) texture for an object and
occurs within the pixel shader.

ÁWhen a color value is read from
the diffuse texture, the alpha
component is check and if its
below a certain level, that
fragment is discarded.

ÁThis prevents the pixel shader
from running any further
expensive calculations on pixels
that are invisible.

73

Stencil Testing
ÁStencil testing occurs after the

pixel shader stage.

ÁStencil testing makes use of a
stencil buffer texture to perform
the fragment test.

ÁA stencil buffer is a texture with
the same dimensions as the
frame buffer.

ÁIt acts as a mask allowing only
certain areas of the frame buffer
to be drawn to.

74

ÁAfter a fragment is processed by the pixel shader, itôs position is

checked in the stencil buffer, if the stencil buffer texel at that

position allows writing then the fragment is written to the frame

buffer otherwise it is discarded.

Image courtesy of OôReilly IPhone 3D programming: http://iphone-3d-programming.labs.oreilly.com/ch06.html

With Stencil Test Without Stencil Test

Depth Testing
ÁWithout depth testing, overdraw occurs depending

on the order of the polygons drawn and results in

severe visual anomalies due to far faces being drawn

on top of near faces.

ÁTo combat that, a depth buffer texture is used. Like

the stencil buffer, the depth buffer is the same size as

the frame buffer and each value in the buffer

contains the depth value of each corresponding pixel

in the frame buffer.

ÁWhen depth testing is enabled, prior to a fragment

being drawn to the frame buffer, its depth value is

compared to the current value in the depth buffer. If

the fragment has a lower or equal value then it gets

drawn to the frame (and its depth value gets

recorded in the depth buffer) otherwise it gets

discarded.

ÁDepth Testing is also known as Z-testing.

75

Without Depth Testing

With Depth Testing

Z-Fighting

ÁZ-fighting occurs when we have two

primitives that are coplanar and their

depth values are very close to each

other. Primitives appear to be merged

together.

ÁThe depth value stored in the depth

buffer has limited precision and so

depth test errors occur when a

primitives interpolated high precision z-

values are checked against the low

precision depth buffer value.

ÁThis only occurs with perspective

projections due to transformation of the

view frustum into a unit cube.

76

Z-Fighting

ÁDuring the projection of geometry into the view volume, the z value for each vertex
gets divided by the w value, this occurs since the w value is not 1 after applying the
perspective transform.

ÁThis has the side effect that the precision of the clip-space depth values is not equally
distributed across the view volume. The Range [0,1] is mapped to [0, 2b -1] for a
perspective projection where b is the depth buffer bit depth.

ÁMost of the precision occurs closer to the near plane and so distant objects (large z
values) are defined in a much smaller range with lower precision.

ÁIn the graph above the view frustum far plane is set at a depth of 100. Z values in the
range [20,100] are defined in an interval of ~1.2 clip space units when the near plane
is set to 50 and in an interval of only ~0.1 units with the near plane set to 1.

ÁThere are various solutions to resolve z-fighting: the two most common ones are to
add a z-offset to geometry or to simply increase the depth bufferôs bit depth providing
a higher degree of precision. Z-buffers historical only had 16bit precision but 24bit
and even 32bit z-buffers are common today.

77

C
li
p

 S
p

a
c
e

 Z
 V

a
lu

e
s

Blending

The Blending Equation and Alpha Blending

78

